Multiple small solutions for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mrow><mml:mo form="prefix">(</mml:mo><mml:mi>x</mml:mi><mml:mo form="postfix">)</mml:mo></mml:mrow></mml:mrow></mml:math>-Schrödinger equations with local sublinear nonlinearities via genus theory (Q4584551)
From MaRDI portal
scientific article; zbMATH DE number 6931306
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Multiple small solutions for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mrow><mml:mo form="prefix">(</mml:mo><mml:mi>x</mml:mi><mml:mo form="postfix">)</mml:mo></mml:mrow></mml:mrow></mml:math>-Schrödinger equations with local sublinear nonlinearities via genus theory |
scientific article; zbMATH DE number 6931306 |
Statements
Multiple small solutions for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mrow><mml:mo form="prefix">(</mml:mo><mml:mi>x</mml:mi><mml:mo form="postfix">)</mml:mo></mml:mrow></mml:mrow></mml:math>-Schrödinger equations with local sublinear nonlinearities via genus theory (English)
0 references
3 September 2018
0 references
\(p(x)\)-Laplace operator
0 references
Schrödinger equation
0 references
variable exponent Lebesgue-Sobolev spaces
0 references
Krasnoselskii's genus
0 references