Multiple small solutions for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mrow><mml:mo form="prefix">(</mml:mo><mml:mi>x</mml:mi><mml:mo form="postfix">)</mml:mo></mml:mrow></mml:mrow></mml:math>-Schrödinger equations with local sublinear nonlinearities via genus theory (Q4584551)

From MaRDI portal
scientific article; zbMATH DE number 6931306
Language Label Description Also known as
English
Multiple small solutions for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mrow><mml:mo form="prefix">(</mml:mo><mml:mi>x</mml:mi><mml:mo form="postfix">)</mml:mo></mml:mrow></mml:mrow></mml:math>-Schrödinger equations with local sublinear nonlinearities via genus theory
scientific article; zbMATH DE number 6931306

    Statements

    Multiple small solutions for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mrow><mml:mo form="prefix">(</mml:mo><mml:mi>x</mml:mi><mml:mo form="postfix">)</mml:mo></mml:mrow></mml:mrow></mml:math>-Schrödinger equations with local sublinear nonlinearities via genus theory (English)
    0 references
    0 references
    0 references
    3 September 2018
    0 references
    \(p(x)\)-Laplace operator
    0 references
    Schrödinger equation
    0 references
    variable exponent Lebesgue-Sobolev spaces
    0 references
    Krasnoselskii's genus
    0 references

    Identifiers