Boundedness of a class of bi-parameter square functions in the upper half-space (Q461704)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Boundedness of a class of bi-parameter square functions in the upper half-space |
scientific article; zbMATH DE number 6354030
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Boundedness of a class of bi-parameter square functions in the upper half-space |
scientific article; zbMATH DE number 6354030 |
Statements
Boundedness of a class of bi-parameter square functions in the upper half-space (English)
0 references
13 October 2014
0 references
bi-parameter square function
0 references
\(T1\) theorem
0 references
0.67781913
0 references
0.6624085
0 references
0.6612894
0 references
0.65799993
0 references
0 references
0 references
0.60543376
0 references
0.6044803
0 references
In this paper, the author introduces the bi-parameter square functions defined by NEWLINE\[NEWLINE Sf(y_1,y_2)=\left(\iint_{\Gamma(y_2)}\iint_{\Gamma(y_1)}\left|\theta_{t_1,t_2}f(x_1,x_2)\right|^2\frac{dx_1 dt_1}{t_1^{n+1}} \frac{dx_2 dt_2}{t_2^{m+1}}\right)^{1/2}, NEWLINE\]NEWLINEwhere \(\Gamma(y_1)=\{(x_1, t_1)\in \mathbb{R}_{+}^{n+1}: |x_1-y_1|<t_1\}\) and NEWLINE\[NEWLINE\theta_{t_1,t_2}f(x_1,x_2)=\iint_{\mathbb{R}^{n+m}} s_{t_1,t_2}(x_1,x_2,z_1,z_2) f(z_1,z_2) dz_1 dz_2.NEWLINE\]NEWLINENEWLINENEWLINEThe author together with \textit{M. Mourgoglou} [Proc. Am. Math. Soc. 142, No. 11, 3923--3931 (2014; Zbl 1325.42015)] proved a boundedness criterion for one-parameter square functions with general measures. In this paper, the author extends this efficient proof strategy to the case of two parameters. Precisely, under certain assumptions the author shows that NEWLINE\[NEWLINE\|Sf\|^2_{L^2(\mathbb{R}^{n+m})}\simeq \iint_{\mathbb{R}_{+}^{m+1}}\iint_{\mathbb{R}_{+}^{n+1}}\left|\theta_{t_1,t_2}f(x_1,x_2)\right|^2\frac{dx_1 dt_1}{t_1} \frac{dx_2 dt_2}{t_2}\lesssim \|f\|^2_{L^2(\mathbb{R}^{n+m})}.NEWLINE\]NEWLINENEWLINENEWLINEThe technique is based on a simple new averaging identity over good double Whitney regions.
0 references