Singular value inequalities for positive semidefinite matrices (Q464553)

From MaRDI portal





scientific article; zbMATH DE number 6362001
Language Label Description Also known as
English
Singular value inequalities for positive semidefinite matrices
scientific article; zbMATH DE number 6362001

    Statements

    Singular value inequalities for positive semidefinite matrices (English)
    0 references
    0 references
    0 references
    27 October 2014
    0 references
    Using some block matrix techniques, the authors generalize the singular value inequality \[ 2s_j(A^{1/2}(A+B)^rB^{1/2})\leq s_j((A+B)^{r+1}) \] for all \(r\geq0\) and positive semidefinite matrices \(A\) and \(B\), obtained by \textit{R. Bhatia} and \textit{F. Kittaneh} [Linear Algebra Appl. 428, No. 8--9, 2177--2191 (2008; Zbl 1148.15014)]. They prove that if \(A,B\) are two positive semidefinite matrices and \(0\leq q\leq1\), we have \[ s_j(A^{q/2(q+1)}K(A+B)^rKB^{q/2(q+1)})\leq s_j((A+B)^{1+r}),\quad r\geq0, \] where \(K=(A^{1/(q+1)}+B^{1/(q+1)})^{1/2}\).
    0 references
    singular value inequalities
    0 references
    positive semidefinite matrix
    0 references
    block matrix technique
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references