Positive top Lyapunov exponent via invariant cones: single trajectories (Q465418)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Positive top Lyapunov exponent via invariant cones: single trajectories |
scientific article; zbMATH DE number 6363008
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Positive top Lyapunov exponent via invariant cones: single trajectories |
scientific article; zbMATH DE number 6363008 |
Statements
Positive top Lyapunov exponent via invariant cones: single trajectories (English)
0 references
31 October 2014
0 references
invariant cones
0 references
Lyapunov exponents
0 references
single trajectories
0 references
0 references
0 references
Given \(\lambda\geq 1\), the authors consider the quadratic forms in \(\mathbb R^p\), \(p\geq 2\), of type \((k,p-k)\) with arbitrary integer \(k\in [1,p-1]\), defined by NEWLINE\[NEWLINEQ_\lambda(x_1,\dots,x_p)=x_1^2+\cdots+x_k^2-\lambda x_{k+1}^2-\cdots-\lambda x_p^2,NEWLINE\]NEWLINE and the corresponding cone NEWLINE\[NEWLINEC_\lambda=\left\{ x\in\mathbb R^p:Q_\lambda (x)>0\right\}\cup\{0\}.NEWLINE\]NEWLINE Also, they consider the families of matrices NEWLINE\[NEWLINE\mathcal{F}_\lambda=\left\{A\in\mathrm{GL}_p:\, Q_\lambda(Ax)>0 \text{ for } x\in \overline{C}_1\setminus \{0\}\right\}NEWLINE\]NEWLINE and NEWLINE\[NEWLINES\mathcal{F}_\lambda=\left\{ A\in\mathcal{F}_\lambda:\,|\det(A)|=1\right\}.NEWLINE\]NEWLINE The main results of the paper establish criteria for the positivity of the top Lyapunov exponent of a nonautonomous dynamics with discrete time in terms of the family of matrices \(S\mathcal{F}_\lambda\) for \(\lambda>1\). In fact, it is proved that if \((A_n)_{n\geq 1}\) is a sequence of matrices in \(S\mathcal{F}_\lambda\) for some \(\lambda>1\), then the top Lyapunov exponent of the corresponding cocycle is positive. Furthermore, the authors consider similar results in the case of flows, and expose the relation to ergodic theory.NEWLINENEWLINENEWLINEThe results in this paper extend, improve and unify some existing results in the field.
0 references