Poly-Euler polynomials and Arakawa-Kaneko type zeta functions (Q466147)

From MaRDI portal





scientific article; zbMATH DE number 6361347
Language Label Description Also known as
English
Poly-Euler polynomials and Arakawa-Kaneko type zeta functions
scientific article; zbMATH DE number 6361347

    Statements

    Poly-Euler polynomials and Arakawa-Kaneko type zeta functions (English)
    0 references
    0 references
    24 October 2014
    0 references
    polylogarithms
    0 references
    Euler polynomials
    0 references
    Arakawa-Kaneko zeta functions
    0 references
    Poly-Euler polynomials \(E_n^{(k)}(x)\) are defined via the generating function NEWLINE\[NEWLINE \frac{2\text{Li}_k(1-e^{-t})}{t(e^t+1)}e^{xt}=\sum_{n=0}^\infty E_n^{(k)}(x)\frac{t^n}{n!} NEWLINE\]NEWLINE where \(\text{Li}_k(x)=\sum_{m=1}^\infty \frac{x^m}{m^k}\). The author proves some identities for these polynomials and studies their relations to some versions of zeta- and \(L\)-functions.
    0 references

    Identifiers