A note on the Zariski multiplicity conjecture (Q466191)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A note on the Zariski multiplicity conjecture |
scientific article; zbMATH DE number 6361374
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A note on the Zariski multiplicity conjecture |
scientific article; zbMATH DE number 6361374 |
Statements
A note on the Zariski multiplicity conjecture (English)
0 references
24 October 2014
0 references
The author proves that a homeomorphism \(\phi\), that gives a right equivalence \(g=f\circ \phi\), preserves the multiplicity, if \(\phi(z)/z\) is bounded on a line segment intersecting the zero locus of \(f\) and its tangent cone only at the origin.
0 references
isolated complex hypersurface singularities
0 references
multiplicity
0 references
topological equivalence
0 references
0 references
0 references
0 references
0.9312587
0 references
0 references
0.92441076
0 references
0.91595644
0 references
0.90990365
0 references