\(L_p\)-approximation \((p \geq 1)\) by \(q\)-Kantorovich operators (Q472540)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: \(L_p\)-approximation \((p \geq 1)\) by \(q\)-Kantorovich operators |
scientific article; zbMATH DE number 6371145
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | \(L_p\)-approximation \((p \geq 1)\) by \(q\)-Kantorovich operators |
scientific article; zbMATH DE number 6371145 |
Statements
\(L_p\)-approximation \((p \geq 1)\) by \(q\)-Kantorovich operators (English)
0 references
19 November 2014
0 references
Summary: For a new \(q\)-Kantorovich operator we establish direct approximation theorems in the space \(L_p[0,1]\), \(1 \leq p \leq \infty\) via Ditzian-Totik modulus of smoothness of second order.
0 references
\(q\)-Kantorovich operator
0 references
Ditzian-Totik modulus of smoothness
0 references