Positive integer powers of one type of complex tridiagonal matrix (Q472652)

From MaRDI portal





scientific article; zbMATH DE number 6371288
Language Label Description Also known as
English
Positive integer powers of one type of complex tridiagonal matrix
scientific article; zbMATH DE number 6371288

    Statements

    Positive integer powers of one type of complex tridiagonal matrix (English)
    0 references
    0 references
    0 references
    19 November 2014
    0 references
    This paper considers tridiagonal matrices with main diagonal $(a,\ldots,a)$, the superdiagonal $(2b,b,\ldots,b)$, and subdiagonal $(-b,\ldots,-b)$. The main results on the determinant, eigenpairs, and powers, are straightforward consequences of the papers by \textit{J. Rimas} [Appl. Math. Comput. 190, No. 2, 1466--1471 (2007; Zbl 1153.65335); ibid. 189, No. 2, 1916--1920 (2007; Zbl 1153.65334)], where $a=0$ and $b=1$. We can also find them in the paper by \textit{H.-W. Chang} et al. [Linear Algebra Appl. 430, No. 4, 999--1006 (2009; Zbl 1167.15006)].
    0 references
    tridiagonal matrices
    0 references
    eigenvalues
    0 references
    eigenvectors
    0 references
    Jordan normal form
    0 references
    Chebyshev polynomials
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references