\(\mathcal{L}\)-invariants and logarithm derivatives of eigenvalues of Frobenius (Q477136)
From MaRDI portal
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | \(\mathcal{L}\)-invariants and logarithm derivatives of eigenvalues of Frobenius |
scientific article |
Statements
\(\mathcal{L}\)-invariants and logarithm derivatives of eigenvalues of Frobenius (English)
0 references
2 December 2014
0 references
Let \(g\) be a level \(\Gamma_0(N)\)(\(p||N\)) newform of even weight \(k\geq 2\), \(L(g, s)\) the classical \(L\)-function of g and \(L_p(g, s)\) the \(p\)-adic \(L\)-function associated to \(g\). Let \(\rho_g\) be the Galois representation of \(\mathrm{Gal}(\overline{\mathbb Q}_p/\mathbb Q_p)\). There is a conjecture due to \textit{B. Mazur} et al. [Invent. Math. 84, 1--48 (1986; Zbl 0699.14028)] stating that the quotient \(\mathcal L\): \(=L^\prime_p(g, k/2)/L(g, k/2)\) depends only on \(\rho_g\) (called the exceptional zero conjecture). In this paper, let \(K\) be a \(p\)-adic local field. The author studies a special kind of \(p\)-adic Galois representation of \(it\). These representations are similar to the Galois representations occurring in the exceptional zero conjecture for modular forms. In particular, the author generalized a formula of \textit{P. Colmez} to general \(p\)-adic local fields [in: Représentations \(p\)-adiques de groupes \(p\)-adiques III: Méthodes globales et géométriques. Paris: Société Mathématique de France. 13--28 (2010; Zbl 1251.11080)].
0 references
\(\mathcal L-\)invariant
0 references
eigenvalues of Frobenius
0 references
exceptional zeros
0 references