Asymptotics of eigenvalues of symmetric Toeplitz band matrices (Q486226)

From MaRDI portal





scientific article; zbMATH DE number 6386813
Language Label Description Also known as
English
Asymptotics of eigenvalues of symmetric Toeplitz band matrices
scientific article; zbMATH DE number 6386813

    Statements

    Asymptotics of eigenvalues of symmetric Toeplitz band matrices (English)
    0 references
    0 references
    0 references
    0 references
    14 January 2015
    0 references
    The authors study the asymptotic behavior of finite non-Hermitian Toeplitz matrices \(T_n(a)=(a_{j-k})_{j,k=1}^n\) in the case when the symbol \(a\) is a Laurent polynomial \(a(t)=\sum_{k=-r}^r a_kt^k\), \(t\in{\mathbb T}\), with \(a_k\in{\mathbb C}\) satisfying \(a_k=a_{-k}\) for \(k\in\{1,\dots,r\}\). Higher order asymptotic formulas for the eigenvalues \(\lambda_{j,n}\) of \(T_n(a)\) as \(n\to\infty\) uniformly with respect to \(j\in\{1,\dots,n\}\) are obtained. The case of Hermitian Toeplitz matrices was considered earlier by \textit{A. Böttcher} et al. [J. Comput. Appl. Math. 233, No. 9, 2245--2264 (2010; Zbl 1195.15009)] and by \textit{P. Deift} et al. [Bull. Inst. Math., Acad. Sin. (N.S.) 7, No. 4, 437--461 (2012; Zbl 1292.15029)].
    0 references
    non-Hermitian Toeplitz matrix
    0 references
    eigenvalue problem
    0 references
    asymptotic expansions
    0 references
    Laurent polynomial
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references