The average number of pivot steps of the simplex-algorithm based on a generalized rotation-symmetry-model (Q486944)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The average number of pivot steps of the simplex-algorithm based on a generalized rotation-symmetry-model |
scientific article; zbMATH DE number 6387658
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The average number of pivot steps of the simplex-algorithm based on a generalized rotation-symmetry-model |
scientific article; zbMATH DE number 6387658 |
Statements
The average number of pivot steps of the simplex-algorithm based on a generalized rotation-symmetry-model (English)
0 references
19 January 2015
0 references
The authors analyze the average number of pivot steps in the simplex method. They generalize the results of Borgwardt (who assumed the rotation-symmetry-model) to cylindric distributions. The new approach allows to analyze the problems with arbitrary (not necessarily positive) right hand sides of the constraints. These results follow from the solution of a problem from stochastic geometry, closely related to the results of Renyi and Sulanke.
0 references
linear programming
0 references
simplex method
0 references
probabilistic analysis
0 references
average case analysis
0 references
stochastic geometry
0 references
rotation symmetry model
0 references
0 references