Decay estimates of the non-isentropic compressible fluid models of Korteweg type in \(\mathbb R^3\) (Q487975)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Decay estimates of the non-isentropic compressible fluid models of Korteweg type in \(\mathbb R^3\) |
scientific article; zbMATH DE number 6390027
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Decay estimates of the non-isentropic compressible fluid models of Korteweg type in \(\mathbb R^3\) |
scientific article; zbMATH DE number 6390027 |
Statements
Decay estimates of the non-isentropic compressible fluid models of Korteweg type in \(\mathbb R^3\) (English)
0 references
23 January 2015
0 references
The authors study the Cauchy problem for the Navier-Stokes-Fourier-Korteweg system for small data. They prove the existence of a unique global solution near a constant state and optimal convergence rates by using energy estimates and interpolation inequalities.
0 references
Navier-Stokes
0 references
Korteweg
0 references
optimal decay rate
0 references
energy method
0 references
Sobolev interpolation
0 references