Periodic constant mean curvature surfaces in \(\mathbb{H}^2 \times \mathbb{R}\) (Q488058)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Periodic constant mean curvature surfaces in \(\mathbb{H}^2 \times \mathbb{R}\) |
scientific article; zbMATH DE number 6390114
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Periodic constant mean curvature surfaces in \(\mathbb{H}^2 \times \mathbb{R}\) |
scientific article; zbMATH DE number 6390114 |
Statements
Periodic constant mean curvature surfaces in \(\mathbb{H}^2 \times \mathbb{R}\) (English)
0 references
23 January 2015
0 references
The authors consider periodic surfaces in \(\mathbb{H}^2\times \mathbb{R}\), where \(\mathbb{H}^2\) is the hyperbolic plane defined by the Poincaré disk model. Denoting \(\mathbb{M}=\mathbb{H}^2\times \mathbb{R}/G\), where \(G\) is the discrete group of isometries of \(\mathbb{H}^2\times \mathbb{R}\) generated by horizontal translations along geodesics and/or a vertical translation, they prove an Alexandrov-type theorem for double periodic H-surfaces \(\Sigma \subset \mathbb{M}\) (Theorem 3.1). Various examples of periodic minimal surfaces in \(\mathbb{H}^2\times \mathbb{R}\) are presented.
0 references
constant mean curvature surfaces
0 references
minimal surfaces
0 references
periodic surfaces
0 references
Alexandrov problem
0 references
Alexandrov reflection technique
0 references
0.9492081
0 references
0.93563604
0 references
0.92728484
0 references
0.9246471
0 references
0.9243143
0 references
0 references
0.9226664
0 references
0.91734886
0 references