On a PDE involving the variable exponent operator with nonlinear boundary conditions (Q493311)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On a PDE involving the variable exponent operator with nonlinear boundary conditions |
scientific article; zbMATH DE number 6478177
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On a PDE involving the variable exponent operator with nonlinear boundary conditions |
scientific article; zbMATH DE number 6478177 |
Statements
On a PDE involving the variable exponent operator with nonlinear boundary conditions (English)
0 references
3 September 2015
0 references
This paper is concerned with the study of the following boundary value problem \[ \begin{cases} -\mathcal{A}_{p(x)}u=\lambda f(x)|u|^{q(x)-2}u &\text{ in }\Omega,\\ \alpha(x,u){\langle A\nabla u, \nabla u \rangle}^{\frac{p(x)-2}{2}}\langle A\nabla u, \vec{n} \rangle=g(x)|u|^{r(x)-2}u\quad &\text{ on }\partial\Omega, \end{cases}\leqno{(1)} \] where \(\Omega \subset \mathbb R^N\) is a bounded domain with \(N \geq 2.\) The differential operator \({\mathcal{A}}_{p(x)}\) is defined by \[ {\mathcal{A}}_{p(x)}u=\operatorname{div} \left(\alpha(x,u){\langle A\nabla u, \nabla u \rangle}^{\frac{p(x)-2}{2}} A\nabla u \right), \] where \(A: \overline \Omega \rightarrow \mathbb R^{N^2}\) is a symmetric function matrix with \(a_{ij}\in L^\infty(\Omega)\cap C^1(\overline\Omega)\) and satisfies \[ \langle A\xi, \xi \rangle =\sum_{i, j=1}^Na_{ij}(x)\xi_i\xi_j \geq |\xi|^2 \quad \forall x\in \overline\Omega, \quad\xi\in \mathbb R^N. \] Under some conditions imposed on \(p(.)\), \(q(.)\), \(r(.),\) the weight functions \(f\) and \(g,\) and based on the Nehari manifold, the authors establish the existence and multiplicity of positive solutions for problem (1).
0 references
Nehari manifold
0 references
variable exponent operator
0 references
nonlinear boundary conditions
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references