Newton polygons and the Prouhet-Tarry-Escott problem (Q503726)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Newton polygons and the Prouhet-Tarry-Escott problem |
scientific article; zbMATH DE number 6676823
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Newton polygons and the Prouhet-Tarry-Escott problem |
scientific article; zbMATH DE number 6676823 |
Statements
Newton polygons and the Prouhet-Tarry-Escott problem (English)
0 references
23 January 2017
0 references
For \(n\geq 2\), the Prouhet-Tarry-Escott (PTE) problem asks for two lists of integers \(X=[x_1,\dots,x_n]\) and \(Y=[y_1,\dots,y_n]\) satisfying \(\sum_{i=1}^n x_i^e=\sum_{i=1}^n y_i^e\) for \(e\in\{1,\dots,k\}\), where \(k\) is an integer in the interval \([2,n-1]\). The authors use Newton polygons to obtain new information on the \(2\)-adic valuation of a certain constant associated with the PTE problem. Further, they give two explicit examples involving the cases \(n=8\) and \(n=9\).
0 references
Newton polygons
0 references
Prouhet-Tarry-Escott problem
0 references
p-adic
0 references
0 references
0 references
0.9132103
0 references
0.9126732
0 references
0 references
0.91115105
0 references
0.8986963
0 references
0.89821655
0 references