Existence of solutions for fractional differential equations with nonlocal and average type integral boundary conditions (Q513487)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Existence of solutions for fractional differential equations with nonlocal and average type integral boundary conditions |
scientific article; zbMATH DE number 6692479
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Existence of solutions for fractional differential equations with nonlocal and average type integral boundary conditions |
scientific article; zbMATH DE number 6692479 |
Statements
Existence of solutions for fractional differential equations with nonlocal and average type integral boundary conditions (English)
0 references
7 March 2017
0 references
In this paper the authors establish sufficient conditions for the existence and uniqueness of solutions for a boundary value problem of fractional differential equations with nonlocal and average type integral boundary conditions. The results are obtained by using the Leray-Schauder nonlinear alternative, Krasnoselskii's fixed point theorem and Banach's fixed point theorem together with Hölder inequality. Examples are provided to illustrate the theory.
0 references
fractional differential equation
0 references
nonlocal integral condition
0 references
existence and uniqueness of solutions
0 references
fixed point theorems
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references