Fractional integrals on variable Hardy-Morrey spaces (Q519952)

From MaRDI portal





scientific article; zbMATH DE number 6699164
Language Label Description Also known as
English
Fractional integrals on variable Hardy-Morrey spaces
scientific article; zbMATH DE number 6699164

    Statements

    Fractional integrals on variable Hardy-Morrey spaces (English)
    0 references
    31 March 2017
    0 references
    In this paper the authors generalize a result of \textit{M. H. Taibleson} and \textit{G. Weiss} [Astérisque 77, 67--151 (1980; Zbl 0472.46041)]. Using atomic decomposition they characterize boundedness of the fractional integral operator \[ I_\alpha f(x)=\frac1{\gamma_\alpha}\int_{\mathbb R^n}\frac{f(y)}{| x-y| ^{n-\alpha}}\,dy \] (\(0<\alpha<n\), \(\gamma_\alpha=\pi^{n/2}2^\alpha\Gamma(\alpha/2)/\Gamma((n-\alpha)/2)\)) on variable Hardy-Morrey spaces. To obtain these results they first derive vector-valued fractional maximal inequalities on variable Morrey spaces. For related results on Lebesgue function spaces with variable exponents see a book of \textit{D. V. Cruz-Uribe} and \textit{A. Fiorenza} [Variable Lebesgue spaces. Foundations and harmonic analysis, Applied and Numerical Harmonic Analysis. New York, NY: Birkhäuser/Springer ix, 312 p. (2013; Zbl 1268.46002)].
    0 references
    0 references
    variable exponent
    0 references
    fractional integral
    0 references
    Morrey space
    0 references
    Hardy-Morrey space
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers