Fractional integrals on variable Hardy-Morrey spaces (Q519952)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Fractional integrals on variable Hardy-Morrey spaces |
scientific article; zbMATH DE number 6699164
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Fractional integrals on variable Hardy-Morrey spaces |
scientific article; zbMATH DE number 6699164 |
Statements
Fractional integrals on variable Hardy-Morrey spaces (English)
0 references
31 March 2017
0 references
In this paper the authors generalize a result of \textit{M. H. Taibleson} and \textit{G. Weiss} [Astérisque 77, 67--151 (1980; Zbl 0472.46041)]. Using atomic decomposition they characterize boundedness of the fractional integral operator \[ I_\alpha f(x)=\frac1{\gamma_\alpha}\int_{\mathbb R^n}\frac{f(y)}{| x-y| ^{n-\alpha}}\,dy \] (\(0<\alpha<n\), \(\gamma_\alpha=\pi^{n/2}2^\alpha\Gamma(\alpha/2)/\Gamma((n-\alpha)/2)\)) on variable Hardy-Morrey spaces. To obtain these results they first derive vector-valued fractional maximal inequalities on variable Morrey spaces. For related results on Lebesgue function spaces with variable exponents see a book of \textit{D. V. Cruz-Uribe} and \textit{A. Fiorenza} [Variable Lebesgue spaces. Foundations and harmonic analysis, Applied and Numerical Harmonic Analysis. New York, NY: Birkhäuser/Springer ix, 312 p. (2013; Zbl 1268.46002)].
0 references
variable exponent
0 references
fractional integral
0 references
Morrey space
0 references
Hardy-Morrey space
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0.95777965
0 references
0.9515388
0 references
0.94610584
0 references
0.94000804
0 references
0.9373387
0 references
0.93532145
0 references
0.9264858
0 references
0.9241891
0 references
0.9221441
0 references