Stochastic-periodic homogenization of Maxwell's equations with linear and periodic conductivity (Q520417)

From MaRDI portal





scientific article; zbMATH DE number 6699692
Language Label Description Also known as
English
Stochastic-periodic homogenization of Maxwell's equations with linear and periodic conductivity
scientific article; zbMATH DE number 6699692

    Statements

    Stochastic-periodic homogenization of Maxwell's equations with linear and periodic conductivity (English)
    0 references
    0 references
    0 references
    3 April 2017
    0 references
    The authors study the limiting behavior, as \(0<\varepsilon\to0\), of the sequence of solutions of the electromagnetic field governed by the following system: \(\partial_{t}D_{\varepsilon}(x,t,\omega)+J_{\varepsilon} (x,t,\omega)=\text{curl}\,H_{\varepsilon}(x,t,\omega)+F_{\varepsilon}(x,t,\omega)\) in \(Q\times \Lambda\), \(\partial_{t} B_{\varepsilon}(x,t,\omega)=-\text{curl}\, E_{\varepsilon}(x,t,\omega)\) in \(Q\times\Lambda\), \(\text{div} B_{\varepsilon}(x,t,\omega)=0\) in \(Q\times\Lambda\), \(\text{div} D_{\varepsilon}(x,t,\omega)\in L^2(Q\times\Lambda)\), \(\gamma\wedge E_{\varepsilon}(x,t,\omega)=0\in \mathbb{R}^3\) on \(\partial\Omega\times(0,T)\times\Lambda\), with initial conditions \(E_{\varepsilon}(\cdot,0,\cdot)=E_{\varepsilon}^0\) in \(\Omega\times\Lambda\), \(H_{\varepsilon}(\cdot,0,\cdot)=H_{\varepsilon}^0\) in \(\Omega\times\Lambda\), where \(B_{\varepsilon}^{i}(x,t,\omega)=\mu_{ij}(x,{\mathcal T}(x/\varepsilon)\omega,x/\varepsilon^2)H_{\varepsilon}^{j}(x,t,\omega)\), \(D_{\varepsilon}^{i}(x,t,\omega)=\eta_{ij}(x,{\mathcal T}(x/\varepsilon)\omega,x/\varepsilon^2)E_{\varepsilon}^{j}(x,t,\omega)\), \(J_{\varepsilon}^{i}(x,t,\omega)=\sigma_{ij}(x,{\mathcal T}(x/\varepsilon)\omega,x/\varepsilon^2)E_{\varepsilon}^{j}(x,t,\omega)\), \(i,j=1,2,3\), \(Q=\Omega\times(0,T)\), \(\Omega\) is a bounded open and simply connected set in \(\mathbb R^3\), \(\Lambda\) is a support of a probability space, \({\mathcal T}\) is a 3-dimensional dynamical system on \(\Lambda\), \(\gamma\) denotes the outer unit normal to \(\partial\Omega\) with respect to \(\Omega\). It is shown that the sequence of solutions to considered class of highly oscillatory problems converge to the solution of a homogenized Maxwell equation.
    0 references
    stochastic two-scale convergence
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references