On stability of Leray's stationary solutions of the Navier-Stokes system in exterior domains (Q520645)

From MaRDI portal





scientific article; zbMATH DE number 6701594
Language Label Description Also known as
English
On stability of Leray's stationary solutions of the Navier-Stokes system in exterior domains
scientific article; zbMATH DE number 6701594

    Statements

    On stability of Leray's stationary solutions of the Navier-Stokes system in exterior domains (English)
    0 references
    0 references
    5 April 2017
    0 references
    Let \(\Omega \subset \mathbb{R}^3\) be an exterior domain with smooth boundary \(\partial \Omega\). Consider the system \[ \begin{aligned} & u_t-\nu\Delta u+(u,\nabla)u+\nabla\Pi=\nabla \cdot F \;\text{ in } \Omega \times (0, \infty) , \\ & \nabla \cdot u =0 \;\text{ in } \Omega \times (0, \infty), \\ & u|_{\partial \Omega}=0, \;\lim_{|x|\rightarrow \infty} u=u_{\infty}, \;u|_{t=0}=u_0, \end{aligned} \] where the notations are the usual ones. The author studies the stability of the solution of the above system around the stationary solution \((w, \pi)\), i.e., the solution of the system \[ \begin{aligned} &-\nu \Delta w +(u_{\infty}, \nabla)w+(w,\nabla)w+\nabla \pi =\nabla \cdot F \;\text{ in } \Omega, \\ & \nabla \cdot w=0 \;\text{ in } \Omega, \\ & w|_{\partial \Omega}=-u_{\infty}, \;\lim_{|x|\rightarrow \infty} w=0, \end{aligned} \] which satisfies \(\int_{\Omega}|\nabla w(x)|^2dx < \infty\) (i.e., it is a Leray stationary solution). The main results are contained in Theorem 2.1, where \(\| w\|_{L^{3,\infty}(\Omega)}\) is assumed to be small.
    0 references
    Navier-Stokes in exterior domains
    0 references
    asymptotic stability
    0 references
    decay property
    0 references
    maximal \(L^p\) regularity
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references