The fundamental function of spaces generated by interpolation methods associated to polygons (Q523642)

From MaRDI portal





scientific article; zbMATH DE number 6707135
Language Label Description Also known as
English
The fundamental function of spaces generated by interpolation methods associated to polygons
scientific article; zbMATH DE number 6707135

    Statements

    The fundamental function of spaces generated by interpolation methods associated to polygons (English)
    0 references
    21 April 2017
    0 references
    Let \((\Omega, \mu)\) be a resonant measure space and let \(\Pi\) be a convex polygon in \(\mathbb R^2\) with vertices \(P_j=(x_j, y_j)\), \(j=1,\dots, N\). Let \(\bar X=(X_1,\dots, X_N)\) be an \(N\)-tuple of rearrangement invariant spaces over \((\Omega, \mu)\). Set \(\Sigma (\bar X)=X_1+\dots +X_N\) and \(\Delta(\bar X)= X_1\cap\dots\cap X_N\). For \(a \in \Sigma (\bar X)\) (respectively, for \(a \in \Delta(\bar X)\)), define the family of norms \[ K(t,s; a)= \inf \Big\{ \,\sum_{j=1}^N t^{x_j} s^{y_j} \|a_j\|_{X_j} : a=\sum_{j=1}^N a_j, \;a_j \in X_j \,\Big\}, \quad t,s>0, \] \[ (\text{respectively,} \quad J(t,s; a)=\max_{1\leq j \leq N} \Big \{\, t^{x_j} s^{y_j} \|a\|_{X_j} \Big \}, \quad t,s>0 ). \] Assume that \((\alpha, \beta)\) is an interior point of \(\Pi\) and \(1\leq q\leq\infty\). The \(K\)-space \(\bar X_{(\alpha, \beta),q;K}\) is the family of all \(a\in \Sigma (\bar X)\) such that the norm \[ \|a\|_{\bar X_{(\alpha, \beta),q;K}}= \Big(\sum_{(m,n)\in \mathbb Z^2} (2^{-\alpha m -\beta n}K(2^m,2^n; a))^q\Big)^{1/q} \] is finite (the sum is replaced by the supremum when \(q=\infty\)). The \(J\)-space \(\bar X_{(\alpha, \beta),q;J}\) consists of all \(a\in \Sigma (\bar X)\) which can be represented as \[ a= \sum_{(m,n)\in \mathbb Z^2} u_{m,n} \qquad \text{(convergence in} \;\Sigma (\bar X) \text{)} \] with \(u_{m,n}\in \Delta (\bar X)\) and \[ \Big(\sum_{(m,n)\in \mathbb Z^2} (2^{-\alpha m -\beta n}J(2^m,2^n; u_{m,n}))^q\Big)^{1/q}<\infty. \] The norm in \(\bar X_{(\alpha, \beta),q;J}\) is given by \[ \|a\|_{\bar X_{(\alpha, \beta),q;J}}= \inf \Big\{\Big(\sum_{(m,n)\in \mathbb Z^2} (2^{-\alpha m -\beta n}J(2^m,2^n; u_{m,n}))^q\Big)^{1/q}\Big\}, \] where the infimum is taken over all representations \((u_{m,n})\) of \(a\) as above. Note that the spaces \(\bar X_{(\alpha, \beta),q;K}\) and \(\bar X_{(\alpha, \beta),q;J}\) are rearrangement invariant spaces. For a Banach function space \(A\), denote by \(A'\) its associate space. The first main result concerns the associated spaces of \(\bar X_{(\alpha, \beta),q;J}\) and \(\bar X_{(\alpha, \beta),q;K}\). It is proved that if \(1/q+1/q'=1\), then \[ (\bar X_{(\alpha, \beta),q;J})'=\overline {X'}_{(\alpha, \beta),q';K} \] and \[ (\bar X_{(\alpha, \beta),q;K})'=\overline {X'}_{(\alpha, \beta),q';J} \] (cf. Theorem 3.4 and Corollary 3.5). Given a rearrangement invariant space \(A\), denote by \(\varphi_A\) its fundamental function. The second main result of the paper is the computation of fundamental functions of spaces \(\bar X_{(\alpha, \beta),q;K}\) and \(\bar X_{(\alpha, \beta),q;J}\) (cf. Theorems 4.3, 4.5 and 4.6). Finally, the author makes use of results of the paper to establish an interpolation formula for \(N\)-tuples of Marcinkiewicz spaces (cf. Theorem 5.1).
    0 references
    0 references
    rearrangement-invariant function spaces
    0 references
    fundamental function
    0 references
    interpolation methods associated to polygons
    0 references
    interpolation of \(N\)-tuples of Banach spaces
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers