On recurrences for sums of powers of binomial coefficients (Q531780)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On recurrences for sums of powers of binomial coefficients |
scientific article; zbMATH DE number 5880811
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On recurrences for sums of powers of binomial coefficients |
scientific article; zbMATH DE number 5880811 |
Statements
On recurrences for sums of powers of binomial coefficients (English)
0 references
20 April 2011
0 references
The authors prove that for \(r\geq 3\) and any \(m\geq 0\), there are no nontrivial integral polynomials \[ p_0(n)=c_0+c_1n+\ldots+c_m n^m, p_1(n)=d_0+d_1n+\ldots+d_m n^m \] such that \[ p_0(n)a_{n+1}^{(r)}+p_1(n) a_n^{(r)}=0,n\geq 0, \] where \[ a_n^{(r)}=\sum_{k=0}^n \binom{n}{k}^r. \]
0 references
binomial coefficients
0 references
recurrence
0 references
0.9897816
0 references
0.98315305
0 references
0.96989703
0 references
0.94396746
0 references
0.93614984
0 references
0 references