On recurrences for sums of powers of binomial coefficients (Q531780)

From MaRDI portal





scientific article; zbMATH DE number 5880811
Language Label Description Also known as
English
On recurrences for sums of powers of binomial coefficients
scientific article; zbMATH DE number 5880811

    Statements

    On recurrences for sums of powers of binomial coefficients (English)
    0 references
    0 references
    0 references
    0 references
    20 April 2011
    0 references
    The authors prove that for \(r\geq 3\) and any \(m\geq 0\), there are no nontrivial integral polynomials \[ p_0(n)=c_0+c_1n+\ldots+c_m n^m, p_1(n)=d_0+d_1n+\ldots+d_m n^m \] such that \[ p_0(n)a_{n+1}^{(r)}+p_1(n) a_n^{(r)}=0,n\geq 0, \] where \[ a_n^{(r)}=\sum_{k=0}^n \binom{n}{k}^r. \]
    0 references
    binomial coefficients
    0 references
    recurrence
    0 references

    Identifiers