On the existence and nonexistence of solutions for some nonlinear wave equations of Kirchhoff type (Q532968)

From MaRDI portal





scientific article; zbMATH DE number 5885181
Language Label Description Also known as
English
On the existence and nonexistence of solutions for some nonlinear wave equations of Kirchhoff type
scientific article; zbMATH DE number 5885181

    Statements

    On the existence and nonexistence of solutions for some nonlinear wave equations of Kirchhoff type (English)
    0 references
    0 references
    0 references
    6 May 2011
    0 references
    The authors prove a local existence result for problems of the type \[ \begin{alignedat}{2} \partial_t^2u- M\big(\|\nabla u(t)\|_2^2\big)\Delta u-\partial_t\Delta u&=f(u) &&\quad\text{in }\Omega,\\ u&=0 &&\quad\text{in }\Gamma_0,\\ M\big(\|\nabla u(t)\|_2^2\big) \partial_\nu u+\partial_t\partial_\nu u&= -\partial_tu &&\quad\text{in }\Gamma_1, \end{alignedat} \] and prove that the energy decays exponentially by using the perturbed energy method. Moreover, nonexistence of a global solution is obtained by a direct approach.
    0 references
    exponential decay
    0 references
    viscosity
    0 references
    Galerkin's method
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references