Reproducing kernels of weighted poly-Bergman spaces on the upper half-plane. II (Q536481)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Reproducing kernels of weighted poly-Bergman spaces on the upper half-plane. II |
scientific article; zbMATH DE number 5896965
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Reproducing kernels of weighted poly-Bergman spaces on the upper half-plane. II |
scientific article; zbMATH DE number 5896965 |
Statements
Reproducing kernels of weighted poly-Bergman spaces on the upper half-plane. II (English)
0 references
18 May 2011
0 references
A new form of the poly-Bergman kernels is established. It is shown that the true-\(n\)-poly-Bergman kernel is given by differentiating the rational function \[ \frac{(\overline{z} + s)^{n-1}}{\overline{\zeta} + s} \left(\frac{\zeta + s}{\overline{\zeta} + s}\right)^{n-1}. \] For weighted poly-Bergman spaces, reproducing kernels are given by means of the action of certain operator group on an orthogonal basis of \(L^2({\mathbb R}^+, \operatorname{d}\!x \operatorname{d}\!y)\).
0 references
poly-Bergman spaces
0 references
reproducing kernel
0 references
weighted poly-Bergman spaces
0 references
operator action
0 references