Existence and regularity for critical anisotropic equations with critical directions (Q536519)

From MaRDI portal





scientific article; zbMATH DE number 5897009
Language Label Description Also known as
English
Existence and regularity for critical anisotropic equations with critical directions
scientific article; zbMATH DE number 5897009

    Statements

    Existence and regularity for critical anisotropic equations with critical directions (English)
    0 references
    0 references
    18 May 2011
    0 references
    The author establishes existence and regularity results for doubly critical anisotropic equations of the type \[ -\Delta_{\vec p}=\lambda |u|^{p^*-2}u\quad\text{in }\Omega\subset \mathbb R^n,\qquad u\in D^{1,\vec p}(\Omega), \] where \(\lambda>0\) is a real number, \(p^*\) is the critical Sobolev exponent, \(\vec p=(p_1,\dots,p_n),\) \(\|u\|_{D^{1,\vec p}}=\sum_{i=1}^n \|\partial u/\partial x_i\|_{L^{p_i}(\Omega)},\) and \(\Delta_{\vec p}\) is the anisotropic Laplace operator defined by \[ \Delta_{\vec p}u=\sum_{i=1}^n {\partial \over {\partial x_i}}\nabla^{p_i}_{x_i}u. \]
    0 references
    anisotropic equation
    0 references
    critical directions
    0 references
    existence
    0 references
    regularity
    0 references

    Identifiers