The \((t,q)\)-analogs of secant and tangent numbers (Q540137)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The \((t,q)\)-analogs of secant and tangent numbers |
scientific article; zbMATH DE number 5903055
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The \((t,q)\)-analogs of secant and tangent numbers |
scientific article; zbMATH DE number 5903055 |
Statements
The \((t,q)\)-analogs of secant and tangent numbers (English)
0 references
1 June 2011
0 references
Summary: The secant and tangent numbers are given \((t, q)\)-analogs with an explicit combinatorial interpretation. This extends, both analytically and combinatorially, the classical evaluations of the Eulerian and Roselle polynomials at \(t = - 1\).
0 references
\(q\)-secant numbers
0 references
\(q\)-tangent numbers
0 references
\((t, q)\)-secant numbers
0 references
\((t, q)\)-tangent numbers
0 references
alternating permutations
0 references
pix
0 references
inverse major index
0 references
lec-statistic
0 references
inversion number
0 references
excedance number
0 references