On a quadratic fractional Hammerstein-Volterra integral equation with linear modification of the argument (Q540230)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On a quadratic fractional Hammerstein-Volterra integral equation with linear modification of the argument |
scientific article; zbMATH DE number 5903355
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On a quadratic fractional Hammerstein-Volterra integral equation with linear modification of the argument |
scientific article; zbMATH DE number 5903355 |
Statements
On a quadratic fractional Hammerstein-Volterra integral equation with linear modification of the argument (English)
0 references
1 June 2011
0 references
The authors examine a quadratic fractional Hammerstein-Volterra integral equation with a linear modification of the argument: \[ x(t)=a(t)+\frac{f(t,x(t))}{\Gamma(\alpha)} \int\limits_0^t \frac{k(t,\tau)u(\tau,x(\tau),x(\lambda\tau))}{(t-\tau)^{1-\alpha}}d\tau,\;\; t\in [0,1],\; 0<\alpha,\lambda<1, \] where \(a:[0,1]\to\mathbb R\), \(f:[0,1]\times\mathbb R\to\mathbb R\), \(k:[0,1]\times [0,1]\to\mathbb R\) and \(u:[0,1]\times\mathbb R\times\mathbb R\to\mathbb R\) are functions satisfying suitable assumptions. Using a Darbo-type fixed point theorem and some techniques of the theory of measures of noncompactness, they derive the existence of a nonnegative continuous and nondecreasing solution to the above equation defined on \([0,1]\).
0 references
quadratic fractional Hammerstein-Volterra integral equation
0 references
nonnegative continuous and nondecreasing solution
0 references
linear modification of the argument
0 references
monotonic solutions
0 references
fractional orders
0 references
measure of noncompactness
0 references
Darbo's fixed point theorem
0 references
0 references
0 references