Matrix polynomials with spectral radius equal to the numerical radius (Q541235)

From MaRDI portal





scientific article; zbMATH DE number 5904453
Language Label Description Also known as
English
Matrix polynomials with spectral radius equal to the numerical radius
scientific article; zbMATH DE number 5904453

    Statements

    Matrix polynomials with spectral radius equal to the numerical radius (English)
    0 references
    0 references
    6 June 2011
    0 references
    Given a non-singular monic matrix polynomial \(B(z)=I z^m-\sum_{j=0}^{m-1}B_jz^j\), \(B_0,\dots,B_{m-1}\in\mathbb{C}^{n\times n}\), the author defines its \textit{numerical range} to be the set \[ W(B)=\{\lambda\in\mathbb{C}: y^*B(\lambda)y=0 \text{ for some }y\in\mathbb{C}^n\setminus\{0\}\}, \] and its \textit{spectrum} as \[ \sigma(B)=\{\lambda\in\mathbb{C}: \det B(\lambda)=0\}. \] Then he defines the \textit{numerical radius} \[ w(B)=\sup\{|\lambda|: \lambda\in W(B)\} \] and the \textit{spectral radius} \[ r(B)=\max\{|\lambda|: \lambda\in\sigma(B)\}. \] Given \(B(z)\) as above, with normal coefficients, he considers its associated polynomial \[ |B|(z)=I z^m-\sum_{j=0}^{m-1}|B_j|\,z^j, \] where \(|A|=(A^*A)^{1/2}\) for any normal matrix \(A\). The paper is concerned with proving that if in addition \(r(B)=r(|B|)\), then {\parindent=6mm \begin{itemize}\item[1.] \(w(B)=r(B)\); \item[2.] if \(\lambda\in\sigma(B)\) and \(|\lambda|=r(B)\), then \(\lambda\) is normal and semisimple. \end{itemize}}
    0 references
    matrix polynomials
    0 references
    numerical range
    0 references
    numerical radius
    0 references
    spectral radius
    0 references
    semisimple eigenvalues
    0 references
    normal eigenvalues
    0 references
    Jordan chains
    0 references

    Identifiers