Selberg's conjecture concerning the distribution of imaginary parts of zeros of the Riemann zeta function (Q542218)

From MaRDI portal





scientific article; zbMATH DE number 5905416
Language Label Description Also known as
English
Selberg's conjecture concerning the distribution of imaginary parts of zeros of the Riemann zeta function
scientific article; zbMATH DE number 5905416

    Statements

    Selberg's conjecture concerning the distribution of imaginary parts of zeros of the Riemann zeta function (English)
    0 references
    0 references
    8 June 2011
    0 references
    Let \(\gamma_n\) denote the positive ordinates of zeros of the Riemann zeta function arranged in increasing order, \(t_n\) the Gramm points, \(\Delta_n=n-\nu\) with \(t_{\nu-1}<\gamma_n\leq t_\nu\). The author proves Selberg's conjecture: if \(\Phi(n)\) is a positive function of \(n\) tending to \(\infty\) then \[ \frac{\sqrt{\log\log n}}{\Phi(n)}<|\Delta_n|<\Phi(n)\sqrt{\log\log n} \] for almost all \(n\).
    0 references
    Riemann zeta function
    0 references
    zeros
    0 references
    imaginary parts
    0 references
    Gramm points
    0 references
    Selberg's conjecture
    0 references

    Identifiers