Moderate deviations principle for products of sums of random variables (Q547408)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Moderate deviations principle for products of sums of random variables |
scientific article; zbMATH DE number 5916822
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Moderate deviations principle for products of sums of random variables |
scientific article; zbMATH DE number 5916822 |
Statements
Moderate deviations principle for products of sums of random variables (English)
0 references
1 July 2011
0 references
In this paper, asymptotic properties of product \(\prod^n_{k=1} S_k\) of the sums \(S_k\) of positive random variables are investigated. In the introduction, the brief history of the topic is provided. The main result of the paper is the moderate deviation principle presented below. Let \(X_n\), \(n= 1,2,\dots\), be independent identically distributed random variables defined on a probability space \((\Omega,{\mathcal F},P)\), such that \(Ee^{\delta X_1}< \infty\) and \(Ee^{\delta|\ln X_1|}< \infty\) for some number \(\delta> 0\) and \(\mu= EX_1> 0\). Denote \(\sigma^2= E(X_1- EX_1)^2\), \(\gamma= \sigma/\mu\), \(S_n= X_1+\cdots+ X_n\). Let \(\{b_n\}_{n\geq 1}\) be a sequence of positive numbers such that \[ \lim_{n\to\infty}\, {b_n\ln n\over\sqrt{n}}= 0,\quad \lim_{n\to\infty}\, {\ln n\over b^2_n}= c\in [0,\infty]. \] Then, for any number \(t> 0\), \[ \lim_{n\to\infty}\, {1\over b^2_n}\ln P\Biggl\{{1\over b_n\sqrt{n}}\, \sum^{\alpha_n}_{k=1} \ln{S_k\over k}\geq t\Biggr\}= -\infty, \] where \[ \alpha_n= \begin{cases} b_n\sqrt{n}(\ln n)^{1/10},\quad &\text{if }\lim_{n\to\infty}\, {\ln n\over b^2_n}= c<\infty,\\ \sqrt{n}\ln n,\quad &\text{if }\lim_{n\to\infty}\, {\ln n\over b^2_n}= \infty.\end{cases} \]
0 references
moderate deviations principle
0 references
products of sums
0 references
independent identically distribution
0 references
positive random variables
0 references
0 references
0 references
0.9069884
0 references
0 references
0.8910618
0 references
0 references
0.88693005
0 references
0.88493407
0 references