On boundedness of discrete multilinear singular integral operators (Q549789)

From MaRDI portal
scientific article
Language Label Description Also known as
English
On boundedness of discrete multilinear singular integral operators
scientific article

    Statements

    On boundedness of discrete multilinear singular integral operators (English)
    0 references
    0 references
    18 July 2011
    0 references
    Let \(m(\xi,\eta)\) be a measurable locally bounded function defined in \(\mathbb R^2\). Let \(1\leq p_1,q_1,p_2,q_2 <\infty\) such that \(p_i=1\) implies \(q_i=\infty\). Let also \(1< p_3,q_3 <\infty\) and \(1/p=1/p_1+1/p_2-1/p_3\). The author proves the following transference result: the operator \[ {\mathcal C}_m (f,g)(x)=\int_{\mathbb R}\int_{\mathbb R}\widehat{f}(\xi)\widehat{g}(\eta)m(\xi,\eta)e^{2\pi ix(\xi+\eta)}\,d\xi \,d\eta \] initially defined for integrable functions with compact Fourier support, extends to a bounded bilinear operator from \(L^{p_1,q_1}(\mathbb R)\times L^{p_2,q_2}(\mathbb R)\) into \(L^{p_3,q_3}(\mathbb R)\) (\(L^{p,q}(\mathbb R)\) is the Lorentz space) if and only if the family of operators \[ {\mathcal D}_{\widetilde{m}_t,p}(a,b)(n)=t^{1/p}\int_{-1/2}^{1/2}\int_{-1/2}^{1/2}P(\xi)Q(\eta)m(t\xi,t\eta)e^{2\pi in(\xi+\eta)}\,d\xi \,d\eta \] initially defined for finite sequences \(a=(a_{k_1})_{k_1\in\mathbb Z}\), \(b=(b_{k_2})_{k_2\in\mathbb Z}\), where \(P(\xi)=\sum_{k_1\in\mathbb Z}a_{k_1}e^{-2\pi i k_1\xi}\) and \(Q(\eta)=\sum_{k_2\in\mathbb Z}b_{k_2}e^{-2\pi i k_2\eta}\), extends to bounded bilinear operators from \(l^{p_1,q_1}(\mathbb Z)\times l^{p_2,q_2}(\mathbb Z)\) into \(l^{p_3,q_3}(\mathbb Z)\) with the norm bounded by a uniform constant for all \(t>0\). The author applies this result to prove the boundedness of the discrete bilinear Hilbert transforms and other related discrete multilinear singular integrals, including the endpoints.
    0 references
    multipliers
    0 references
    transference
    0 references
    Lorentz spaces
    0 references
    bilinear Hilbert transforms
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers