Random-data Cauchy problem for the Navier-Stokes equations on \(\mathbb T^3\) (Q550015)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Random-data Cauchy problem for the Navier-Stokes equations on \(\mathbb T^3\) |
scientific article; zbMATH DE number 5925854
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Random-data Cauchy problem for the Navier-Stokes equations on \(\mathbb T^3\) |
scientific article; zbMATH DE number 5925854 |
Statements
Random-data Cauchy problem for the Navier-Stokes equations on \(\mathbb T^3\) (English)
0 references
19 July 2011
0 references
The authors study the random-data initial value problem of the Navier-Stokes equations in \(L^2(\mathbb T^3)\). By using the randomization approach recently developed by \textit{N. Burq} and \textit{N. Tzvetkov} [Invent. Math. 173, No.~3, 449--475 (2008; Zbl 1156.35062)], one proves that for almost all \(\omega \in \Omega\), where \(\Omega\) is the sample space of a probability space \((\Omega, A, p)\), for the randomized initial data \(\vec f_H^\omega\in L_\sigma^2(\mathbb T^3)\), the Navier-Stokes equations have a global solution \(\vec u\in C([0,\infty),L_\sigma^2(\mathbb T^3))\), or more precisely, \(\vec u- e^{t\Delta}\vec f_H^\omega\in C([0,\infty),H_\sigma^{1/2}(\mathbb T^3))\).
0 references
Navier-Stokes equations
0 references
initial value problem
0 references
randomization
0 references
0 references
0 references
0 references
0 references
0.95836574
0 references
0.92490554
0 references
0.9110408
0 references
0.9110408
0 references
0.9069804
0 references
0.9047548
0 references
0.90314865
0 references
0.9022145
0 references
0.90205973
0 references