Remarks on the intersection local time of fractional Brownian motions (Q552992)

From MaRDI portal





scientific article; zbMATH DE number 5932052
Language Label Description Also known as
English
Remarks on the intersection local time of fractional Brownian motions
scientific article; zbMATH DE number 5932052

    Statements

    Remarks on the intersection local time of fractional Brownian motions (English)
    0 references
    0 references
    0 references
    26 July 2011
    0 references
    The existence of the so-called intersection local time \[ I(B^H,\widetilde B^H)\equiv\int_0^T\int_0^T\delta(B_t^H-\widetilde B_s^H)\,ds\,dt, \] where \(\delta(x)\) is the Dirac delta function was given by \textit{D. Nualart} and \textit{S. Ortiz-Latorre} [J. Theor. Probab. 20, No. 4, 759--767 (2007; Zbl 1154.60028)]. The authors give another proof for the existence of the random variable \(I(B^H,\widetilde B^H)\) in \(L^2\). They also discuss necessary and sufficient conditions for the intersection local time process to be smooth in the sense of Meyer-Watanabe.
    0 references
    0 references
    intersection local time
    0 references
    fractional Brownian motion
    0 references
    chaos expansion
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references