Extremal values of Dirichlet \(L\)-functions in the half-plane of absolute convergence (Q558194)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Extremal values of Dirichlet \(L\)-functions in the half-plane of absolute convergence |
scientific article; zbMATH DE number 2184642
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Extremal values of Dirichlet \(L\)-functions in the half-plane of absolute convergence |
scientific article; zbMATH DE number 2184642 |
Statements
Extremal values of Dirichlet \(L\)-functions in the half-plane of absolute convergence (English)
0 references
30 June 2005
0 references
Let \(q\) be a positive integer and let \(\chi\) be a Dirichlet character mod \(q\). As usual, denote by \[ L(s, \chi) ~=~ \sum_{n=1}^{\infty} \frac{\chi (n)}{n^s} ~=~ \prod_{p} \left( 1 - \frac{\chi (p)}{p^s} \right)^{-1} \] the Dirichlet L-function associated to \(\chi\). The author proves that for any real \(\theta\) there are infinitely many values of \(s= \sigma + it\) with \(\sigma \to 1+\) and \(t \to \infty\) such that \[ Re \left \{ \exp(i \theta) \log L(s, \chi) \right \} ~\geq~ \log \frac{\log \log \log t}{\log \log \log \log t} ~+~ O(1) ~~. \] The proof is based on an effective version of Kronecker's approximation theorem.
0 references
0 references