A proof that an odd schlicht function has bounded coefficients. (Q565913)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A proof that an odd schlicht function has bounded coefficients. |
scientific article; zbMATH DE number 2550100
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A proof that an odd schlicht function has bounded coefficients. |
scientific article; zbMATH DE number 2550100 |
Statements
A proof that an odd schlicht function has bounded coefficients. (English)
0 references
1932
0 references
Es wird bewiesen, daß für eine in \(|z|<1\) reguläre, schlichte, ungerade Funktion \[ f(z) = z + a_3z^3 +a_5z^5 + \dots \] \(|a_n| \leq A\) gilt, wo \(A\) eine absolute Konstante ist. Die von den Verf. geäußerte Vermutung \(A=1\) ist inzwischen von \textit{Fekete} und \textit{Szegö} wiederlegt worden (1933; F. d. M. \(59_{\text{I}}\), 347).
0 references