On the non-linear difference equation \(\Delta x_n=k\Phi (x_n)\). (Q568796)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the non-linear difference equation \(\Delta x_n=k\Phi (x_n)\). |
scientific article; zbMATH DE number 2553307
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the non-linear difference equation \(\Delta x_n=k\Phi (x_n)\). |
scientific article; zbMATH DE number 2553307 |
Statements
On the non-linear difference equation \(\Delta x_n=k\Phi (x_n)\). (English)
0 references
1932
0 references
Verf. löst die Gleichung \[ u(x+1)-u(x)=k\Phi (u(x)), \] indem er setzt \[ x=k^{-1}\int _{u(0)}^{u(x)}\sum _{s=1}^\infty \frac {k^{s-1}f_s(v)dv}{s!} \] und die Rekursionformel für die Funktionen \(f_s(v)\) aufstellt. Es ist \[ f_1(u)=\Phi (u),\quad f_2(u)=\frac {\Phi '(u)}{\Phi (u)}, \quad \dots \] Die Methode wird auf Beispiele angewandt, wie \(\Phi (u)=u^{1+e}, \Phi (u)=ke^{au}\).
0 references