Über die j-ten Überdeckungsdichten konvexer Körper. (On the j-th covering densities of convex bodies) (Q578591)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Über die j-ten Überdeckungsdichten konvexer Körper. (On the j-th covering densities of convex bodies) |
scientific article; zbMATH DE number 4013436
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Über die j-ten Überdeckungsdichten konvexer Körper. (On the j-th covering densities of convex bodies) |
scientific article; zbMATH DE number 4013436 |
Statements
Über die j-ten Überdeckungsdichten konvexer Körper. (On the j-th covering densities of convex bodies) (English)
0 references
1987
0 references
The present paper deals with the following finite covering problem: For a given convex body K in Euclidean d-space \(E^ d\) and integers j, k with \(0\leq j\leq d\), \(1\leq k\) determine the maximum \(V_{j,k}(K)\) of the intrinsic volume \(V_ j\) of convex bodies C whose j-skeleton can be covered by k translates of K. (Recall that \(V_ d\) is the usual volume, \(2V_{d-1}\) is the surface area etc.) Denoting for dim \(K\geq j\) the j-th k-covering density \(kV_ j(K)V^{- 1}_{j,k}(K)\) of K with \(\vartheta_{j,k}(K)\), we particularly prove the inequality \[ 1\leq \vartheta_{j,k}(K)< e(j+\sqrt{\pi /2}\sqrt{d- j})< e(d+1) \] and give some bounds for a related problem.
0 references
convex body in Euclidean n-space
0 references
intrinsic volume
0 references
covering density
0 references