Über die j-ten Überdeckungsdichten konvexer Körper. (On the j-th covering densities of convex bodies) (Q578591)

From MaRDI portal





scientific article; zbMATH DE number 4013436
Language Label Description Also known as
English
Über die j-ten Überdeckungsdichten konvexer Körper. (On the j-th covering densities of convex bodies)
scientific article; zbMATH DE number 4013436

    Statements

    Über die j-ten Überdeckungsdichten konvexer Körper. (On the j-th covering densities of convex bodies) (English)
    0 references
    0 references
    1987
    0 references
    The present paper deals with the following finite covering problem: For a given convex body K in Euclidean d-space \(E^ d\) and integers j, k with \(0\leq j\leq d\), \(1\leq k\) determine the maximum \(V_{j,k}(K)\) of the intrinsic volume \(V_ j\) of convex bodies C whose j-skeleton can be covered by k translates of K. (Recall that \(V_ d\) is the usual volume, \(2V_{d-1}\) is the surface area etc.) Denoting for dim \(K\geq j\) the j-th k-covering density \(kV_ j(K)V^{- 1}_{j,k}(K)\) of K with \(\vartheta_{j,k}(K)\), we particularly prove the inequality \[ 1\leq \vartheta_{j,k}(K)< e(j+\sqrt{\pi /2}\sqrt{d- j})< e(d+1) \] and give some bounds for a related problem.
    0 references
    convex body in Euclidean n-space
    0 references
    intrinsic volume
    0 references
    covering density
    0 references

    Identifiers