Quasihomogeneous singularities (Q579353)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Quasihomogeneous singularities |
scientific article; zbMATH DE number 4014889
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Quasihomogeneous singularities |
scientific article; zbMATH DE number 4014889 |
Statements
Quasihomogeneous singularities (English)
0 references
1988
0 references
If one has an ample line bundle over a projective variety \(X\) with a group action, one may contract the zero section and then divide the cone by the group-action. These varieties are called cone quotients of \(X\). \textit{Pinkham} showed that analytically every quasihomogeneous normal surface singularity is a cone quotient of a curve and that the resolution graph is star-shaped. This holds also algebraically for any characteristic and the group may be chosen abelian. One gets a bijection between quasihomogeneous normal surface singularities and the data of the resolution in the algebraic category.
0 references
quasihomogeneous normal surface singularity
0 references
resolution graph
0 references