Integral basis of the field \(\mathbb Q(\root n\of a)\) (Q585280)

From MaRDI portal





scientific article; zbMATH DE number 3830065
Language Label Description Also known as
English
Integral basis of the field \(\mathbb Q(\root n\of a)\)
scientific article; zbMATH DE number 3830065

    Statements

    Integral basis of the field \(\mathbb Q(\root n\of a)\) (English)
    0 references
    0 references
    1982
    0 references
    Let \(\mathbb Q\) be the field of rational numbers, \(\mathbb Z\) the ring of rational integers, \(n,a\in\mathbb Z\), \(n\geq 2\), \((n,a)=1\). The main result of the paper under review is the following theorem: Let \(f(x)=x^n-a\) be an irreducible polynomial in \(\mathbb Z[x]\). Let \(\root n\of a\) be one of the roots of \(f(x)\) in \(\mathbb C\). Let \(n=\prod_{i=1}^k p_i^{s_i}\), \(a=\prod_{j=1}^l q_j^{t_j}\), where \(p_i\) \((i=1,2,\dots,k)\), \(q_j\) \((j=1,2,\dots,l)\) are distinct primes. Put \(n_i=n/p_i^{s_i}\) \((i=1,2,\dots,k)\). Now put \(g_0(x)=l\) and for any \(m\in\{1,2,\dots,n\}\) denote by \(g_n(x)\) a monic polynomial in \(\mathbb Z[x]\) satisfying \[ g_m(x)\equiv (x^{n_i}-a)^{[m/n_i]} x^{m-n_i[m/n_i]} \bmod p_i^{[[m/n_i]\gamma_i]+1}\quad (i=1,2,\dots,k), \] where \(\gamma_i=1/p_i^{s_i}\) when \(\text{ord}_{p_i}\left(a^{p_i^{s_i}}-1\right)=1\), \(\gamma_i=1/\varphi(p_i^{s_i})\) when \(\text{ord}_{p_i}\left(a^{p_i^{s_i}}-1\right)>1\). Then \[ \left\{\frac{g_m(a)}{\prod_{i=1}^k p_i^{[[m/n_i]\gamma_i]}\prod_{j=1}^l q_j^{[t_jm/n]}} \mid m=0,1,\dots, n-1\right\} \] is an integral basis of \(\mathbb Q(\root n\of a)\).
    0 references
    Newton diagram of polynomial
    0 references
    radical extension
    0 references
    integral basis
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references