The generalized Roper-Suffridge extension operator (Q5906991)
From MaRDI portal
scientific article; zbMATH DE number 1976001
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The generalized Roper-Suffridge extension operator |
scientific article; zbMATH DE number 1976001 |
Statements
The generalized Roper-Suffridge extension operator (English)
0 references
7 September 2003
0 references
The main results of the paper are the following two theorems. (1) Let \(f\) be a normalized biholomorphic function on the unit disc \(\mathbb D\subset\mathbb C\). Assume that \(f\) is \(\varepsilon\)-starlike (i.e. \(f(\mathbb D)\) is starlike with respect to every point from the set \(\varepsilon f(\mathbb D)\)). Let \(\|\|_j\) be the \(\mathbb C\)-norm on \(\mathbb C^{n_j}\), \(j=1,\dots,k\). Put \(\Omega:=\{(z,w_1,\dots,w_k)\in\mathbb D\times\mathbb C^{n_1}\times\dots\times\mathbb C^{n_k}: |z|^2+\|w_1\|_1^{p_1}+\dots+\|w_k\|_k^{p_k}<1\}\), where \(p_1,\dots,p_k\geq 1\). Define \(\Phi(z,w_1,\dots,w_k):=(f(z),(f'(z))^{1/p_1}w_1,\dots,(f'(z))^{1/p_1}w_k)\), \((z,w_1,\dots,w_k)\in\Omega\), with \(1^{1/p_j}=1\), \(j=1,\dots,k\). Then \(\Phi\) is a normalized biholomorphic \(\varepsilon\)-starlike mapping on \(\Omega\). (2) Let \(f\) be a normalized biholomorphic \(\varepsilon\)-starlike mapping on \(\mathbb D^n\). Put \(\Omega:=\{(z,w)\in\mathbb C^n\times\mathbb C^n: |z_j|^2+|w_j|<1, j=1,\dots,n\}\). Define \(\Phi(z,w):=(f(z),f'(z)w)\), \((z,w)\in\Omega\). Then \(\Phi\) is a normalized biholomorphic \(\varepsilon\)-starlike mapping on \(\Omega\).
0 references
normalized biholomorphic function
0 references
\(\varepsilon\)-starlike mappings
0 references
0 references