Proof of certain identities in combinatory analysis. (Q5909361)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Proof of certain identities in combinatory analysis. |
scientific article; zbMATH DE number 2608720
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Proof of certain identities in combinatory analysis. |
scientific article; zbMATH DE number 2608720 |
Statements
Proof of certain identities in combinatory analysis. (English)
0 references
1919
0 references
Es handelt sich nm die beiden Formeln \[ \begin{aligned} 1 +\sum_{n =1}^\infty \frac{q^{n^2}}{(1-q)(1-q^2)\cdots(1-q^n)} &=\prod_{n =1}^\infty (1-q^{5n-4})^{-1}(1-q^{5n-1})^{-1},\\ 1 +\sum_{n =1}^\infty \frac{q^{n(n +1)}}{(1-q)(1-q^2)\cdots(1- q^n)}& =\prod_{n =1}^\infty (1-q^{5n-3})^{-1}(1-q^{5n-2})^{-1}\end{aligned} \] \[ (| q|<1), \] die zum erstenmal von Rogers bewiesen worden sind (Lond. M. S. Proc. (1) 25, 318,1894). Hier werden neue vereinfachte Beweise gegeben. In einer Einleitung gibt Hardy eine Skizze der Vorgeschichte der fraglichen Formeln.
0 references