Weak solutions of quasilinear problems with nonlinear boundary condition (Q5925829)

From MaRDI portal





scientific article; zbMATH DE number 1567039
Language Label Description Also known as
English
Weak solutions of quasilinear problems with nonlinear boundary condition
scientific article; zbMATH DE number 1567039

    Statements

    Weak solutions of quasilinear problems with nonlinear boundary condition (English)
    0 references
    0 references
    0 references
    0 references
    13 November 2001
    0 references
    weak solution
    0 references
    Sobolev space
    0 references
    quasilinear problem
    0 references
    Let \(\Omega\subset \mathbb{R}^N\) be an unbounded domain with (possible noncompact) smooth boundary \(\Gamma\) and \(n\) is the unit outward normal on \(\Gamma\). At certain (extensive) assumptions there is proved the existence of solutions for the boundary value problem NEWLINE\[NEWLINE-\text{div}(a(x)|\nabla u|^{p- 2}\nabla u)= \lambda(1+|x|)^{\alpha_1}|u|^{p- 2}u+(1+|x|)^{\alpha_2}|u|^{q- 2}u\quad\text{in }\Omega,NEWLINE\]NEWLINE NEWLINE\[NEWLINEa(x)|\nabla u|^{p- 2}\nabla u\cdot n+ b(x)|u|^{p-2} u=g(x, u)\quad\text{on }\Gamma.NEWLINE\]NEWLINE Under more simple assumptions, the existence of eigensolutions for the eigenvalue problem NEWLINE\[NEWLINE-\text{div}(a(x)|\nabla u|^{p- 2}\nabla u)= \lambda[(1+|x|^{\alpha_1})|p|^{p- 2} u+(1+|x|)^{\alpha_2}|u|^{q- 2}u]\quad\text{in }\Omega,NEWLINE\]NEWLINE NEWLINE\[NEWLINEa(x)|\nabla u|^{p- 2}\nabla u\cdot n+ b(x)|u|^{p- 2}u= \lambda g(x,u)\quad\text{on }\GammaNEWLINE\]NEWLINE is proved.
    0 references

    Identifiers