Multipliers of Banach valued weighted function spaces (Q5926154)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Multipliers of Banach valued weighted function spaces |
scientific article; zbMATH DE number 1570669
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Multipliers of Banach valued weighted function spaces |
scientific article; zbMATH DE number 1570669 |
Statements
Multipliers of Banach valued weighted function spaces (English)
0 references
14 September 2001
0 references
weight function
0 references
convolution
0 references
Radon Nikodým property
0 references
multiplier spaces
0 references
tensor product space
0 references
Banach algebra
0 references
Let \(G\) be an \(LCA\) group and \(X\) a Banach space with dual space \(X^*\) having the wide Radon Nikodým property. The author considers the weighted \(p\)-Lebesgue space NEWLINE\[NEWLINEL^p_\psi(G,X) =\left[\int_G \bigl\|f(t)\bigr \|^p_X \psi(t)^p dt\right]^{1/p}, \quad 1\leq p<\infty,NEWLINE\]NEWLINE where \(\psi\) is a locally bounded weight function satisfying \(\psi(s+t) \leq\psi (s)\psi(t)\), \(s,t \in G\). The author studies the multiplier spaces concerning the weighted space \(L^p_\psi (G,X)\), \(1\leq p<\infty\). It is shown that the multiplier space NEWLINE\[NEWLINE\Hom_{L^1_\psi (G,A)} \bigl\{L^p_\psi (G,X),L^{q'}_{\psi-1} (G,X^*)\bigr\}NEWLINE\]NEWLINE is isometrically isomorphic to the dual of a tensor product space NEWLINE\[NEWLINE\Bigl[ L^p_\psi(G,X) \otimes_{L^1_\psi (G,A)}L^q_\psi (G,X)\Bigr]^*,\;{1\over p}+{1 \over q}\geq 1,\;{1\over q}+{1 \over q'}=1,NEWLINE\]NEWLINE where \(A\) is a commutative Banach algebra with identity of norm 1 and \(X\) is an \(A\)-module Banach space. The other characterization NEWLINE\[NEWLINE\Hom_{L^1_\psi (G,A)}\bigl[L^p_\psi (G,X),\;L^{q'}_{\psi-1} (G,X^*)\bigr] \cong\bigl[ A_\psi^{p,q} (G,X)\bigr]^*NEWLINE\]NEWLINE is also proved here.
0 references