Robust stabilization of uncertain input-delayed systems using reduction method (Q5926181)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Robust stabilization of uncertain input-delayed systems using reduction method |
scientific article; zbMATH DE number 1570716
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Robust stabilization of uncertain input-delayed systems using reduction method |
scientific article; zbMATH DE number 1570716 |
Statements
Robust stabilization of uncertain input-delayed systems using reduction method (English)
0 references
4 October 2001
0 references
delay system
0 references
robust stabilization
0 references
feedback stabilization
0 references
uncertain system
0 references
linear transformation
0 references
quadratic Lyapunov functional
0 references
0 references
One considers the problem of feedback stabilization of the uncertain system NEWLINE\[NEWLINE\dot x= (A+\Delta A(t)) x(t)+ \sum^r_0 B_i u_i(t- h_i)+ \sum^r_0 \Delta B_j(t) u_j(t- \widetilde h_j)NEWLINE\]NEWLINE with NEWLINE\[NEWLINEA(t)= DF(t)E,\quad B_j(t)= D_jF_j(t) E_j,\quad|F(t)|\leq 1,\quad|F_j(t)|< 1.NEWLINE\]NEWLINE The procedure is as follows: first the linear transformation NEWLINE\[NEWLINEz(t)= x(t)+ \sum^r_0 \int^t_{t- h_i} e^{A(t- h_i-\theta)} B_iu_i(\theta) d\thetaNEWLINE\]NEWLINE is used, then the robustly stabilizing feedback is designed using an appropriate quadratic Lyapunov functional.
0 references