Estimates on binomial sums of partition functions (Q5928170)

From MaRDI portal
scientific article; zbMATH DE number 1582137
Language Label Description Also known as
English
Estimates on binomial sums of partition functions
scientific article; zbMATH DE number 1582137

    Statements

    Estimates on binomial sums of partition functions (English)
    0 references
    0 references
    23 April 2002
    0 references
    Let \(G\) be a Lie algebra of dimension \(n\) and of nilpotency class \(k\) over a field of characteristic zero. Let the invariant \(\mu(G)\) be the minimal dimension of a faithful \(G\)-module. Furthermore, if \(p(n)\) is the unrestricted partition function, define \[ p(n,k)= \sum_{j=0}^k \binom {n-j}{k-j} p(j). \] The author's main results are: (i) \(\mu(G)\leq p(n,k)\); (ii) \(p(n,k)\) is unimodal; (iii) \(p(n,k)< 2.825(2^n)/ \sqrt{n}\); and (iv) an asymptotic estimate for \(p(n,k)\) as \(n,k\to \infty\).
    0 references
    binomial sums
    0 references
    asymptotic estimate
    0 references
    Lie algebra
    0 references
    partition function
    0 references

    Identifiers