Estimates on binomial sums of partition functions (Q5928170)
From MaRDI portal
scientific article; zbMATH DE number 1582137
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Estimates on binomial sums of partition functions |
scientific article; zbMATH DE number 1582137 |
Statements
Estimates on binomial sums of partition functions (English)
0 references
23 April 2002
0 references
Let \(G\) be a Lie algebra of dimension \(n\) and of nilpotency class \(k\) over a field of characteristic zero. Let the invariant \(\mu(G)\) be the minimal dimension of a faithful \(G\)-module. Furthermore, if \(p(n)\) is the unrestricted partition function, define \[ p(n,k)= \sum_{j=0}^k \binom {n-j}{k-j} p(j). \] The author's main results are: (i) \(\mu(G)\leq p(n,k)\); (ii) \(p(n,k)\) is unimodal; (iii) \(p(n,k)< 2.825(2^n)/ \sqrt{n}\); and (iv) an asymptotic estimate for \(p(n,k)\) as \(n,k\to \infty\).
0 references
binomial sums
0 references
asymptotic estimate
0 references
Lie algebra
0 references
partition function
0 references