Fourier-type minimal extensions in real \(L_1\)-space (Q5928722)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Fourier-type minimal extensions in real \(L_1\)-space |
scientific article; zbMATH DE number 1583417
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Fourier-type minimal extensions in real \(L_1\)-space |
scientific article; zbMATH DE number 1583417 |
Statements
Fourier-type minimal extensions in real \(L_1\)-space (English)
0 references
1 April 2001
0 references
Fourier-type operator
0 references
shift-invariant space
0 references
minimal extension
0 references
0.93961716
0 references
0.88823664
0 references
0.87260723
0 references
0.86916304
0 references
The authors consider the Fourier-type operator \(F_w\) from the space \(L_1([0,2\pi]^n)\) to a finite-dimensional, shift-invariant space \(V\), with fix \(w\in V\). Main results are the following theorems:NEWLINENEWLINENEWLINE2) \(F_w\) is the only minimal extension of \(R_w\).NEWLINENEWLINENEWLINE2) \(\dim(\text{span}[\text{Min}_{R_w}(L_1, V)- F_w])= \infty\).NEWLINENEWLINENEWLINE3) The identity operator on \(L_\infty\) has the only element of best approximation in \((P_{R_w}(L_1, V))^*\).NEWLINENEWLINENEWLINEThe paper contains also eight very important lemmas, a few remarks and four interesting examples.
0 references