Uniqueness for mild solutions of Navier-Stokes equations in \(L^3(\mathbb{R}^3)\) and other limit functional spaces (Q5929439)

From MaRDI portal





scientific article; zbMATH DE number 1585038
Language Label Description Also known as
English
Uniqueness for mild solutions of Navier-Stokes equations in \(L^3(\mathbb{R}^3)\) and other limit functional spaces
scientific article; zbMATH DE number 1585038

    Statements

    Uniqueness for mild solutions of Navier-Stokes equations in \(L^3(\mathbb{R}^3)\) and other limit functional spaces (English)
    0 references
    0 references
    0 references
    10 October 2001
    0 references
    uniqueness
    0 references
    weak solution
    0 references
    Navier-Stokes equations
    0 references
    Consider NEWLINE\[NEWLINE\begin{cases} \overrightarrow{\nabla}\vec u=0 \\ \partial_t\vec u=\Delta\vec u-(\vec u \overrightarrow{\nabla})\vec u-\overrightarrow{\nabla}p \end{cases}\tag{1} NEWLINE\]NEWLINEthe Navier-Stokes (N-S)-equations for an incompressible and homogeneous viscous fluid filling all the space and in the absence of exterior forces (the density and the viscosity constants being taken \(1\)) where \(\vec u(t,x):\mathbb{R}^+\times \mathbb{R}^3 \to \mathbb{R}^3\) is the speed vector and \(p(t,x):\mathbb{R}^+\times \mathbb{R}^3 \to \mathbb{R}\) is the pressure. NEWLINENEWLINELet \(T \in ]0,\infty]\). A weak solution on \(]0,T[\) of (1) is a field of vectors \(\vec u(t,x)\in (L^2_{\text{loc}}(]0,T[\times \mathbb{R}^3))^3\) which verifies NEWLINE\[NEWLINE \begin{cases} \overrightarrow{\nabla}\vec u=0\\ \text{there exists } p\in D'(]0,T[\times \mathbb{R}^3) \text{ such that } \partial_t\vec u=\Delta\vec u-\overrightarrow{\nabla}\cdot \vec u \otimes \vec{u}-\overrightarrow{\nabla}p. \end{cases} NEWLINE\]NEWLINENEWLINEIf, in addition \(\vec{u}(t,x) \in C([0,T[,(L^p)^3)\), one says that \( \vec u\) is a mild solution in \(L^p\). The main result of the paper is the proof of uniqueness for mild solutions of the (N-S) equations in \(L^3(\mathbb{R}^3)\) given by the NEWLINENEWLINETheorem 1. Let \(\vec u \in C([0,T[,(L^3)^3), \;\overrightarrow{v} \in C([0,T'[,(L^3)^3)\), such that NEWLINENEWLINEi) \(\vec u\) is a weak solution of the (N-S)-equations on \(]0,T[\), NEWLINENEWLINEii) \(\overrightarrow{v}\) is a weak solution of the (N-S)-equations on \(]0,T'[\), NEWLINENEWLINEiii) \(\vec u |_{t=0}=\overrightarrow{v} |_{t=0}\). NEWLINENEWLINENEWLINEThen \(\vec u=\overrightarrow{v}\) on \([0,\inf \{T,T'\}[\).
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references