A generalization of the Laurent series (Q5930765)

From MaRDI portal





scientific article; zbMATH DE number 1592027
Language Label Description Also known as
English
A generalization of the Laurent series
scientific article; zbMATH DE number 1592027

    Statements

    A generalization of the Laurent series (English)
    0 references
    0 references
    0 references
    1 November 2001
    0 references
    Let \(G\subset\widehat{\mathbb C}\) be a finitely connected domain (\(G\neq\mathbb C\), \(G\neq\widehat{\mathbb C}\)) and let \(\Lambda=\{\lambda_1,\lambda_2,\dots\}\subset\mathbb C\setminus G\). Consider the following conditions: (i) Any function \(f\in\mathcal O(G)\) with \(f(\infty)=0\) (if \(\infty\in G\)) can be represented in \(G\) by a series of the form \[ \sum_{k=1}^\infty\sum_{j=1}^\infty\frac{a_{j,k}}{(z-\lambda_k)^j}; \] moreover, the series converges locally normally in \(G\). (ii) For any compact \(S\subset G\) there exists a compact \(T\subset G\) such that \[ G\setminus T\subset\bigcup_{k=1}^\infty K(\lambda_k,\text{dist}(\lambda_k,S)), \] where \(K(\lambda,r):=\{z\in\mathbb C\: |z-\lambda|<r\}\). (iii) For any \(\varepsilon>0\): \[ \partial G\subset\bigcup_{k=1}^\infty K(\lambda_k,\text{dist}(\lambda_k,\partial G)+\varepsilon). \] (iv) For any \(z\in\partial G\) there exists a \(\lambda\in\overline\Lambda\cap\mathbb C\) such that \(\text{dist}(\lambda,\partial G)=|z-\lambda|\). The authors prove that (i) \(\Longleftrightarrow\) (ii). If \(G\) is bounded or \(\infty\in G\), then (i), (ii), (iii) are equivalent. If, moreover, \(\Lambda\) is bounded, then all the above conditions are equivalent.
    0 references

    Identifiers