A generalization of the Laurent series (Q5930765)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A generalization of the Laurent series |
scientific article; zbMATH DE number 1592027
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A generalization of the Laurent series |
scientific article; zbMATH DE number 1592027 |
Statements
A generalization of the Laurent series (English)
0 references
1 November 2001
0 references
Let \(G\subset\widehat{\mathbb C}\) be a finitely connected domain (\(G\neq\mathbb C\), \(G\neq\widehat{\mathbb C}\)) and let \(\Lambda=\{\lambda_1,\lambda_2,\dots\}\subset\mathbb C\setminus G\). Consider the following conditions: (i) Any function \(f\in\mathcal O(G)\) with \(f(\infty)=0\) (if \(\infty\in G\)) can be represented in \(G\) by a series of the form \[ \sum_{k=1}^\infty\sum_{j=1}^\infty\frac{a_{j,k}}{(z-\lambda_k)^j}; \] moreover, the series converges locally normally in \(G\). (ii) For any compact \(S\subset G\) there exists a compact \(T\subset G\) such that \[ G\setminus T\subset\bigcup_{k=1}^\infty K(\lambda_k,\text{dist}(\lambda_k,S)), \] where \(K(\lambda,r):=\{z\in\mathbb C\: |z-\lambda|<r\}\). (iii) For any \(\varepsilon>0\): \[ \partial G\subset\bigcup_{k=1}^\infty K(\lambda_k,\text{dist}(\lambda_k,\partial G)+\varepsilon). \] (iv) For any \(z\in\partial G\) there exists a \(\lambda\in\overline\Lambda\cap\mathbb C\) such that \(\text{dist}(\lambda,\partial G)=|z-\lambda|\). The authors prove that (i) \(\Longleftrightarrow\) (ii). If \(G\) is bounded or \(\infty\in G\), then (i), (ii), (iii) are equivalent. If, moreover, \(\Lambda\) is bounded, then all the above conditions are equivalent.
0 references