Kreǐn's trace formula and the spectral shift function (Q5931286)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Kreǐn's trace formula and the spectral shift function |
scientific article; zbMATH DE number 1590799
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Kreǐn's trace formula and the spectral shift function |
scientific article; zbMATH DE number 1590799 |
Statements
Kreǐn's trace formula and the spectral shift function (English)
0 references
21 April 2002
0 references
Krejn's trace formula
0 references
spectral shift function
0 references
Baker-Campbell-Hausdorff formula
0 references
0.94052017
0 references
0.9223933
0 references
0.8983066
0 references
0.8912382
0 references
0.8894745
0 references
0.8893499
0 references
M. G. Krejn proved, for two selfadjoint operators \(A\) and \(B\) whose difference \(B-A\) is of trace class, the trace formula NEWLINE\[NEWLINE\text{Tr}[f(B)- f(A)]= \int_{\mathbb{R}} f'(x) \xi(x) dxNEWLINE\]NEWLINE for a certain class of functions \(f\). Here \(\xi(x)\) is a function in \(L^1(\mathbb{R})\), which is called the spectral shift function. In the paper under review, the author provides another proof based on the integral representation of harmonic functions on the upper half plane, emphasizing to use the Baker-Campbell-Hausdorff formula, and gives some examples of admissible functions \(f\).
0 references