A nonsmooth critical point theory approach to some nonlinear elliptic equations in \({\mathbb R}^n\) (Q5933735)

From MaRDI portal





scientific article; zbMATH DE number 1604483
Language Label Description Also known as
English
A nonsmooth critical point theory approach to some nonlinear elliptic equations in \({\mathbb R}^n\)
scientific article; zbMATH DE number 1604483

    Statements

    A nonsmooth critical point theory approach to some nonlinear elliptic equations in \({\mathbb R}^n\) (English)
    0 references
    0 references
    14 June 2001
    0 references
    0 references
    quasilinear elliptic equations
    0 references
    nonsmooth critical point theory
    0 references
    A quasilinear elliptic equation NEWLINE\[NEWLINE - \sum^{n}_{i,j=1} D_{j}\bigl(a_{ij}(x,u)D_{i}u\bigr) + \frac 12\sum^{n}_{i,j=1} {\partial a_{ij}\over\partial u} (x,u)D_{i}uD_{j}u + b(x)u = f(x,u) \tag{1} NEWLINE\]NEWLINE in \(\mathbb R^{n}\) is studied. Suppose that \(b\in L^\infty_{\text{loc}} (\mathbb R^{n})\) and \(b\geq b_{0}>0\) almost everywhere for a constant \(b_0\); define a Hilbert space \(E\) of all functions \(u:\mathbb R^{n} \to \mathbb R\) such that \(\|u\|^2_{E} = \int_{\mathbb R^{n}} (|Du|^2 + b(x)|u|^2) \roman dx <\infty\). Let \(f\) be a subcritical Carathéodory function. Under suitable hypotheses on the functions \(a_{ij}\) and \(f\), existence of a nontrivial nonnegative weak solution \(u\in E\) to (1) is proven by means of nonsmooth critical point theory. Furthermore, right hand sides \(f\) such that \(f(x,\cdot)\) is not continuous are considered if \(a_{ij} = \delta_{ij}\).
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references