Controllability of the heat equation with memory (Q5933758)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Controllability of the heat equation with memory |
scientific article; zbMATH DE number 1604506
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Controllability of the heat equation with memory |
scientific article; zbMATH DE number 1604506 |
Statements
Controllability of the heat equation with memory (English)
0 references
14 June 2001
0 references
approximate controllability
0 references
kernel
0 references
controllability
0 references
one-dimensional linear viscoelasticity
0 references
0.96845907
0 references
0.9653634
0 references
0.9630535
0 references
0.95596707
0 references
0.9557029
0 references
The present paper is concerned with the controllability of the equation NEWLINE\[NEWLINE\begin{cases} y_t(x,t)- \gamma\Delta y(x,t)- \int^t_0 a(t-s) \Delta y(x,s) ds= m(x) u(x,y)\text{ in }Q,\\ y(x,0)= y_0(x)\quad\text{in }\Omega,\quad y(x,t)= 0\quad\text{in }\Sigma,\end{cases}\tag{1.1}NEWLINE\]NEWLINE where \(\gamma> 0\), \(\Omega\) is an open bounded subset of \(\mathbb{R}^n\) with the boundary \(\partial\Omega\) of class \(C^2\), \(Q=\Omega\times (0,T)\), \(\Sigma= \partial\Omega\times (0, T)\), \(m(\cdot)\) is the characteristic function of an open subset \(\omega\) of \(\Omega\), and \(a\in C^\infty(0,+\infty)\) is a locally integrable completely monotone kernel. The main result tells us that under some assumptions related to the kernel \(a\), the problem (1.1) is approximately controllable. In particular, the approximate boundary controllability of the problem follows: NEWLINE\[NEWLINE\begin{cases} y_t(x,t)- \gamma\Delta y(x,t)- \int^t_0 a(t-s)\Delta y(x,s) ds= 0\text{ in }Q,\\ y(x,0)= y_0(x)\quad\text{in }\Omega,\quad y(x,t)= u(x,t)\quad\text{in }\Sigma.\end{cases}NEWLINE\]NEWLINE In the last section the controllability of the one-dimensional linear viscoelasticity equation is studied: NEWLINE\[NEWLINE\begin{cases} y_t(x,t)- \int^t_0 a(t-s) y_{xx}(x, s) ds= m(x) u(x,t),\;(x,t)\in Q,\\ y(0,t)= y(\ell,t)= 0,\quad t\in (0,T),\quad y(x,0)= y_0(x),\quad x\in (0,1),\end{cases}NEWLINE\]NEWLINE where \(Q= (0,\ell)\times (0,T)\), \(\omega= (a_1,a_2)\subset (0,\ell)\) and \(a(t)\in C[0,+\infty)\cap C^\infty (0,+\infty)\), \((-1)^j a^{(j)}(t)\geq 0\), \(t> 0\), \(j= 0,1,\dots\)\ .
0 references